
Today I’ll be sharing some of the technical and data science information that we 
learned from our recent AI/ML challenge.

The OCTO works to promote emerging technology and spread understanding of 
technology in the agency.



During the summer of 2020, the OCTO and FAS ITC collaborated to host an online 
machine learning challenge. 

Full details are at this website:
https://www.challenge.gov/challenge/GSA-artificial-intelligence-AI-machine-learning-
ML-challenge/

https://www.challenge.gov/challenge/GSA-artificial-intelligence-AI-machine-learning-ML-challenge/
https://www.challenge.gov/challenge/GSA-artificial-intelligence-AI-machine-learning-ML-challenge/


Let’s start with the business problem wanted to solve:

The goal of this challenge is to develop an artificial intelligence (AI), or 
machine learning (ML) solution that will review end-user license 
agreements (EULA) for terms and conditions that are unacceptable to the 
government. On average it takes all parties involved approximately 7-14 
days to review an EULA and ensure that all unacceptable terms and 
conditions are identified.

A EULA details the rights and restrictions which apply to the use of 
software or services. It can also be known as a software license agreement 
or acceptable use policy. As part of the acquisition process of software or 
services, GSA reviews the associated EULAs. This review must be 
completed prior to awarding new contracts or modifying existing 
contracts. A GSA contracting officer (CO) reviews applicable EULAs for 
terms and conditions that are not in accordance with Federal law and 
regulations. The CO may also coordinate a legal review with the Office of 
General Counsel if they feel it is warranted. Should EULAs contain 
language that would conflict with Federal law and regulations, the CO must 
negotiate changes to the EULA to remove the problematic language.

We are looking for a solution that will use AI and/or ML to improve this 



manual process. The solution will include a user interface that GSA will use 
to process the documents and identify unacceptable clauses/terms in the 
EULAs. Watch our AI / ML challenge video to learn more about the desired 
solution.

This solution will decrease the time spent manually reviewing EULAs and 
free resources to focus on other aspects of the acquisition process. It will 
also improve the accuracy and consistency of the review process.

https://youtu.be/uOBFIqoOJ8k


There are a variety of reasons a clause might be unacceptable to government. We 
provided “Attachment B” to the teams in the reference materials:
https://github.com/GSA/ai-ml-challenge-2020/tree/master/reference

https://github.com/GSA/ai-ml-challenge-2020/tree/master/reference


This shows how AI & ML relate to each other.



Business Problem 
Identify a business 
problem or question

Map To ML Technique
Focus on the basics 
(classification, 
regression)

Data Readiness 
Is data available to 
support the 
question (Input 
and Output)?

This is a typical machine learning flow.

https://github.com/GSA/ai-ml-challenge-2020/blob/master/reference/AI_ML%20Challenge%20Scoring%20Rubric.pdf


This is a view of a machine learning pipeline.

https://github.com/GSA/ai-ml-challenge-2020/blob/master/reference/AI_ML%20Challenge%20Scoring%20Rubric.pdf


We had instructions on challenge.gov and github.
Here were the github instructions:
https://github.com/GSA/ai-ml-challenge-2020/blob/master/README.md



These were the scoring criteria. We published a scoring rubric to explain them.
https://github.com/GSA/ai-ml-challenge-2020/blob/master/reference
/AI_ML%20Challenge%20Scoring%20Rubric.pdf

https://github.com/GSA/ai-ml-challenge-2020/blob/master/reference/AI_ML%20Challenge%20Scoring%20Rubric.pdf
https://github.com/GSA/ai-ml-challenge-2020/blob/master/reference/AI_ML%20Challenge%20Scoring%20Rubric.pdf
https://github.com/GSA/ai-ml-challenge-2020/blob/master/reference/AI_ML%20Challenge%20Scoring%20Rubric.pdf


These were the three winners.



















We found a lot of similarities between the solutions we received.

This is a big-picture view of the typical architecture that teams used.





I am going to demonstrate the process followed by one of the teams.



The team used Jupyter Notebook and Python for their data science work.



Figure 1: Overview of our solution presented as a flowchart. 

This shows their finished architecture.



This is how the team described their process for deciding on the machine 
learning libraries to use:

● As a first step, our team used traditional algorithms to approach 
the problem. 

● We started with Random Forest, which is a popular machine 
learning algorithm that is widely used in classification tasks. 

● Random Forest is simple and intuitive in nature. It does not 
require hyperparameter tuning and usually does not overfit to the 
dataset with an increase in the number of decision trees within 
the model. We achieved an F1 score of 27.5% with it.

● As the next step, we implemented the XGBoost algorithm. 
XGBoost is a tree-based algorithm (like Random Forest) but 
uses the technique of boosting. Boosting is an error-correction 
algorithm which gives a higher emphasis on data-points which 
are misclassified. Unlike random forests, the decision trees are 
created iteratively, where at each step, the tree puts more 
emphasis on the misclassified points, so as to reduce the overall 
error. We therefore used XGBoost as the natural next step to 
Random Forest. On testing however, the F1 score achieved 
through XGBoost was lower than Random Forest. This was 
potentially due to a high False Negative, resulting in a low Recall 
value. This means that the model was classifying most clauses 



● (even the ones that were labelled unacceptable) as acceptable.
● After running several experiments trying to improve the accuracy 

of traditional models, we realized that more advanced, deep 
learning based models could potentially help us increase 
accuracies. We therefore started with the simplest form of 
sequence models that are used on textual data: Recurrent 
Neural Networks (RNN). As a starting point we used a Long 
Short-Term Memory (LSTM) which attempts to resolve the 
vanishing gradient, a known obstacle for RNNs. LSTMs however 
capture the flow of information in one direction (left to right in 
case of sentences). Bidirectional LSTMs capture the flow of 
information from both left to right and right to left. This serves as 
an advantage as the model can learn from the future and the 
past information at a given point in the sentence. To add 
interpretability to our results, we added an attention layer that 
provides the importance of words in the decision making process 
of the model. The attention layer weighs those words differently 
providing more emphasis on words that have stronger 
relationships. Experiments run by researchers and practitioners 
have shown that Gated Recurrent Units (GRUs) train faster and 
provide a proportional (or sometimes better as in our case) 
accuracies to that of LSTMs. We therefore replaced the LSTM 
units with GRUs. The GRU unit does not have a forget gate 
(unlike the LSTM) and has fewer parameters to train on.

● Arguably the most sophisticated classification model, as of now, 
is the XLNet which builds upon the transformer architecture 
which incorporates encoding and decoding layers in addition to 
sinusoidal position encoding of words in a sentence. It also 
incorporates permutations of words to learn more complex 
relationships between words. It has been pre-trained on a large 
corpus of data from Wikipedia, BookCorpus, etc. In our 
experiments, it did improve the validation accuracies. 

● To provide an ensemble solution, we combined our best 
performing models: XLNet and Bi-GRU with attention. The final 
classification decision made by this ensemble was the average 
of the probabilities coming out of these models. We had lively 
discussions about whether we should just keep XLNet or do a 
weighted combination of XLNet with Bi-GRUs. The result was 
that the argument for robustness in the estimate ensembling 
these two complex algorithms won the argument of the day. In 
addition, in our final solution, we kept the Random Forest score 
as a sanity check output in our display. We believe this model is 



● the easiest to explain to lay people. However this score was not 
used in the average.



Figure 2: The expanded version of the back-end prediction engine.

From the team:
It comprises two major components: Words to Numbers and Classification. Arrows 
show which words to numbers algorithm used for which classification algorithm. Solid 
lines represent the models that were integrated into the final solution, while dashed 
lines represent the ones that we tested during the development process of our final 
solution.




